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ABSTRACT

First-principles methods are employed to study the ground-state properties of δ-Pu-based 
alloys. The calculations show that an alloy component larger than δ-Pu has a stabilizing effect. 
Detailed calculations have been performed for theδ-Pu1-cAmc system. Calculated density of Pu-
Am alloys agrees well with the experimental data. The paramagnetic → antiferromagnetic 
transition temperature (Tc) of δ-Pu1-cAmc alloys is calculated by a Monte-Carlo technique. By 
introducing Am into the system, one could lower Tc from 548 K (pure Pu) to 372 K (Pu70Am30). 
We also found that, contrary to pure Pu where this transition destabilizes δ-phase, Pu3Am 
compound remains stable in the antiferromagnetic phase that correlates with the recent discovery 
of a Curie-Weiss behavior of δ-Pu1-cAmc at c ≈ 24 at. %.

INTRODUCTION

It is strongly believed that many anomalous physical properties of Pu metal, such as many 
allotropic forms (α, β, γ, δ, δ’, and ε), significant (~ 24 %) volume increase for the α→ δ
transition, negative coefficient of thermal expansion of  δ-Pu, low (~ 913 K) melting point, etc., 
are due to the particular position of Pu in the Periodic Table. In respect to a progressive filling of 
the 5f sub-shell, Pu is located on the border between the light actinides (Th-Np) with itinerant 5f
electrons and the heavy actinides (Am-Lr) with 5f localized states. In other words, the transition 
from delocalized to localized 5f electrons takes place within the plutonium phase diagram 
resulting in numerous allotropic forms. 

Among these phases δ-Pu has received a significant interest in the metallurgical community. 
This phase is also the most interesting for physicist because its 5f electrons exhibit intermediate 
behavior between delocalization and localization [1]. The δ-Pu phase is stable at temperatures 
between 593 and 736 K, but can be stabilized at lower temperatures by alloying Pu with a 
foreign element, so called 'δ-stabilizer’. Among the elements known as δ-stabilizers only four, 
Ga, Al, Ce, and Am, allow stabilization at and below the room temperature. These stabilizers can 
be divided into two groups: i) elements with atomic size smaller than the size of the δ-Pu atoms 
(Ga and Al) and ii) elements with atomic size larger than that of the δ-Pu atoms (Ce and Am). 

Recent progress in ab initio description of δ-Pu has been made within density functional 
theory (DFT) that allows for magnetic interactions [2-6]. At elevated temperatures δ-Pu is argued 
to be a disordered magnet that upon cooling undergoes transformation to an antiferromagnetic 
(AF) structure (L10 or type I) with a mechanical destabilization and phase transition to a lower 
symmetry phase as the result [3, 4]. The calculated [5] transition temperature is in good 
agreement with temperature measured at the γ→ δ transition in Pu. Finally, the lattice constants 
of Pu3X (L10) compounds (X – IIIB metal), recently calculated within the standard spin-
polarized KKR-ASA [4] and LAPW [6] techniques, are in excellent agreement with experiment.



In the present study, we mainly concentrated our efforts on the Pu1-cAmc system where 
recently an unambiguous Curie-Weiss (CW) behavior has been discovered [7].

COMPUTATIONAL DETAILS

We employ two different computational techniques. First, the scalar-relativistic spin 
polarized Green function technique based on the KKR method within the multipole-corrected 
atomic sphere approximation and the muffin-tin correction to the electrostatic energy (KKR-
ASA+M) [8, 9]. The other is a full potential linear muffin-tin orbitals (FPLMTO) method [10]. 
The local Airy gas (LAG) [11] and the generalized gradient (GGA) approximations [12] have 
been used for the exchange-correlation energy in these methods, respectively.

The spin-polarized KKR-ASA+M calculations were performed for AF (type I) and 
paramagnetic (PM) arrangements of the spins on the Pu-lattice sites. The PM state of  δ-Pu was 
represented by the disordered local moments (DLM) model [13] incorporated within the coherent 
potential approximation (CPA) [14].

As KKR-ASA+M approximation is not sufficiently accurate to calculate the elastic constants, 
we applied the FPLMTO method for this purpose. 

RESULTS AND DISCUSSION

According to Söderlind [2], the AF (L10) structure is the zero-temperature, ground-state 
magnetic configuration of δ-Pu. Recent calculations by Söderlind et al. [3] show that this 
ground-state AF structure is closely followed by the mechanically stable disordered magnetic 
state, about 3 mRy higher in energy. The authors came to the conclusions that the spin entropy 
could favor the disordered magnetic state at higher temperatures. It was also shown [4] that 
solutes that help retain the disordered state to lower temperatures also stabilizeδ-Pu to lower 
temperatures. Figure 1 shows the energy difference between equilibrium DLM and AF spin 
configurations of δ-Pu90X10 alloys, where X = Sc, In, Ce, Tl, Am, Cm, Th, and Ac represents the 
elements with a size exceeding that of δ-Pu (group I), and X = Ni, Co, Fe, Mn, Zn, Ga, Al, and 
Zr represent elements with a size smaller that of δ-Pu (group II). Notice that doping Pu with a 
large solute atom lowers the total energy of the DLM phase with respect to the AF phase and 
thereby stabilizesδ-Pu to lower temperatures. On the other hand, we found that the magnetic 3d
transition metals from group II (Mn, Fe, and Co) strongly destabilize δ-Pu, in agreement with 
their experimental phase diagrams. 
 The calculations in Ref. [4] were restricted to Pu90X10 alloys only. In this paper, however, we 
study Pu1-cAmc alloys with concentration of Am up to 30 at. %. The DLM → AF transition 
temperature was obtained from Monte Carlo (MC) simulations within the Ising-type Hamiltonian 
with the effective cluster interactions (ECI). These were extracted through the Connolly-
Williams structure inverse procedure for each Pu1-cAmc alloy under consideration. The 
calculations of the ECI have been carried out for the theoretical (DLM) equilibrium lattice 
parameter defined for all alloys within KKR-ASA+M formalism.

In Figure 2, we show the total energy per atom and its temperature derivative in the MC 
simulations of pure δ-Pu [5]. The first order phase transition occurs at Tc ≈ 548 K, which is in
fair agreement with the experimental temperature of δ-γ phase transition inPu (593 K).

Results of MC calculations of the DLM → AF transition temperature inthe Pu1-cAmc system 
are shown in Figure 3. By introducing Am into the system, the transition decreases from ≈ 548 K 
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Figure 1. The energy difference between equilibrium DLM and AF configurations of δ-Pu90X10

alloys as a function of the difference in Wigner-Seitz radius (∆d) between the components [4].

(pure Pu) to ≈ 372 K (Pu70Am30).
Figure 4 shows the calculated and experimental values of the lattice parameter for δ-Pu1-cAmc

alloys. The experimental atomic volumes for this alloy are consistently larger than suggested by 
the Vegard’s law. As could be seen from Figure 4, magnetic calculations are able to reproduce 
this trend very well. From pure δ-Pu to δ-Pu80Am20 alloys, calculations with DLM are shown, 
whereas beyond that, from δ-Pu75Am25 to pure Am, an AF order is applied. This is in accordance 
with our belief that for δ-Pu alloys with more than ~ 25 at. % Am AF order is preferred at or 
below room temperature.

Notice in Figure 3that Pu75Am25 alloy is AF at and below ~ 400 K, whereas above this 
temperature disordered magnetism is expected. As was mentioned earlier, similar magnetic 
transition occurs also for pure δ-Pu, but at a considerably higher temperature(~ 548 K). In the 
case of δ-Pu the magnetic DLM → AF transition drives theδ→ γ phase transition due to a 
structural instability of the AF phase. For Pu-Am alloy, however, no such structural phase 
transition has been found suggesting that the AF configuration remains mechanically stable. 
Theoretically, this hypothesis can be corroborated by calculating elastic constants or relevant 
deformation energies for the AF Pu-Am alloy.

The Pu75Am25 alloy was modeled by a Pu3Am (L12 structure) compound when calculating 
deformation energies using the FPLMTO method. In Figure 5 we show relative energies for AF 
Pu3Am and AF δ-Pu as a function of c/a axial ratio. Notice that for δ-Pu the AF configuration is 
strongly unstable with respect to the tetragonal distortion, whereas the Pu3Am system remains 
mechanically stable, with a minimum in the total energy for c/a = 1.414. Hence, there is a
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Figure 2. The configurational energy per atom E(K) and its first temperature derivative (dE/dT) 
as a function of temperature in the Monte Carlo simulations of δ-Pu.
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Figure 3. DLM → AF transition temperature for δ-Pu1-cAmc alloys.

fundamental difference between δ-Pu and Pu3Am in that while both undergo a magnetic DLM →
AF transition, it destabilizes δ-Pu but not the Pu3Am compound. This is important because our 
theory thus predicts the possibility for an AF order inthe Pu-Am system. Our theoreticalpicture, 
indeed, is in a good agreement with recent measurements of the magnetic susceptibility in the 
Pu-Am system where, at ≈ 24-26 at. % Am, CW behavior has been discovered [7].

It is well known that Pu and other actinides with itinerant 5f states tend to crystallize in low 
symmetry and open structures and that the reason for this is due to high density of 5f states at the 
Fermi level (EF) that efficiently rules out high symmetry structures [16].  It is tempting to 
associate the destabilization of AFδ-Pu at low temperatures to a similar phenomenon.  We 
therefore show, in Figure 6, the calculated (FPLMTO) electronic density of states (DOS) for AF 
Pu and Pu3Am. This plot focuses on the DOS behavior in the vicinity of the EF. Notice that for 
pure Pu, there is a strong peak intersecting the EF with its maximum just below. This is an 
inherently unfavorable situation due to the large contribution of this peak to the band energy 
[16]. For Pu3Am, however, this peak is shifted mostly below EF, which is now located close to a
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Figure 5. Relative energy as a function of c/a axial ratio for Pu and Pu3Am in mRy/atom.
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Figure 6. Total electronic density of states for Pu and Pu3Am in states/eV/f.u.  The energy scale 
is shifted so that the Fermi level is positioned at zero energy.



minimum in the DOS. This shift of the EF in Pu3Am relative to pure Pu is a consequence of the 
additional 5f electrons provided by the americium in this compound.  We speculate that this more 
stable situation in Pu3Am is responsible for the mechanical stability in this system.

CONCLUSIONS

We have studied the δ-Pu-Am system theoretically by means of density-functional 
electronic-structure techniques. The question of antiferromagnetism has been addressed first by 
studying a possible magnetic transition in the Pu-Am alloy with 25 at.% Am content. MC 
simulations within the Ising model predict this alloy to be AF below about 400 K. In addition, 
calculations suggest that AF order is mechanically stable for this alloy, further supporting its 
existence. Details of the electronic structure show that the additional 5f electrons provided by the 
Am shifts the Fermi level to a more stable position in the electronic density of states that may 
explain the stabilization of the Pu-Am alloy.
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